FisheyeMultiNet: Real-time Multi-task Learning Architecture for Surround-view Automated Parking System

12/23/2019
by   Pullarao Maddu, et al.
11

Automated Parking is a low speed manoeuvring scenario which is quite unstructured and complex, requiring full 360 near-field sensing around the vehicle. In this paper, we discuss the design and implementation of an automated parking system from the perspective of camera based deep learning algorithms. We provide a holistic overview of an industrial system covering the embedded system, use cases and the deep learning architecture. We demonstrate a real-time multi-task deep learning network called FisheyeMultiNet, which detects all the necessary objects for parking on a low-power embedded system. FisheyeMultiNet runs at 15 fps for 4 cameras and it has three tasks namely object detection, semantic segmentation and soiling detection. To encourage further research, we release a partial dataset of 5,000 images containing semantic segmentation and bounding box detection ground truth via WoodScape project <cit.>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset