First Steps Toward Understanding the Extrapolation of Nonlinear Models to Unseen Domains
Real-world machine learning applications often involve deploying neural networks to domains that are not seen in the training time. Hence, we need to understand the extrapolation of nonlinear models – under what conditions on the distributions and function class, models can be guaranteed to extrapolate to new test distributions. The question is very challenging because even two-layer neural networks cannot be guaranteed to extrapolate outside the support of the training distribution without further assumptions on the domain shift. This paper makes some initial steps toward analyzing the extrapolation of nonlinear models for structured domain shift. We primarily consider settings where the marginal distribution of each coordinate of the data (or subset of coordinates) does not shift significantly across the training and test distributions, but the joint distribution may have a much bigger shift. We prove that the family of nonlinear models of the form f(x)=∑ f_i(x_i), where f_i is an arbitrary function on the subset of features x_i, can extrapolate to unseen distributions, if the covariance of the features is well-conditioned. To the best of our knowledge, this is the first result that goes beyond linear models and the bounded density ratio assumption, even though the assumptions on the distribution shift and function class are stylized.
READ FULL TEXT