First Steps Toward Camera Model Identification with Convolutional Neural Networks

03/03/2016
by   Luca Bondi, et al.
0

Detecting the camera model used to shoot a picture enables to solve a wide series of forensic problems, from copyright infringement to ownership attribution. For this reason, the forensic community has developed a set of camera model identification algorithms that exploit characteristic traces left on acquired images by the processing pipelines specific of each camera model. In this paper, we investigate a novel approach to solve camera model identification problem. Specifically, we propose a data-driven algorithm based on convolutional neural networks, which learns features characterizing each camera model directly from the acquired pictures. Results on a well-known dataset of 18 camera models show that: (i) the proposed method outperforms up-to-date state-of-the-art algorithms on classification of 64x64 color image patches; (ii) features learned by the proposed network generalize to camera models never used for training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset