First-Order Logic with Connectivity Operators

07/13/2021
by   Nicole Schrader, et al.
0

First-order logic (FO) can express many algorithmic problems on graphs, such as the independent set and dominating set problem, parameterized by solution size. On the other hand, FO cannot express the very simple algorithmic question of whether two vertices are connected. We enrich FO with connectivity predicates that are tailored to express algorithmic graph properties that are commonly studied in parameterized algorithmics. By adding the atomic predicates conn_k (x, y, z_1 ,…, z_k) that hold true in a graph if there exists a path between (the valuations of) x and y after (the valuations of) z_1,…,z_k have been deleted, we obtain separator logic FO + conn. We show that separator logic can express many interesting problems such as the feedback vertex set problem and elimination distance problems to first-order definable classes. We then study the limitations of separator logic and prove that it cannot express planarity, and, in particular, not the disjoint paths problem. We obtain the stronger disjoint-paths logic FO + DP by adding the atomic predicates disjoint-paths_k [(x_1, y_1 ),… , (x_k , y_k )] that evaluate to true if there are internally vertex disjoint paths between (the valuations of) x_i and y_i for all 1 ≤ i ≤ k. Disjoint-paths logic can express the disjoint paths problem, the problem of (topological) minor containment, the problem of hitting (topological) minors, and many more. Finally, we compare the expressive power of the new logics with that of transitive closure logics and monadic second-order logic.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
11/03/2022

Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes

The disjoint paths logic, FOL+DP, is an extension of First-Order Logic (...
research
02/14/2023

Model Checking Disjoint-Paths Logic on Topological-Minor-Free Graph Classes

Disjoint-paths logic, denoted 𝖥𝖮+𝖣𝖯, extends first-order logic (𝖥𝖮) with...
research
08/19/2020

Efficient Graph Minors Theory and Parameterized Algorithms for (Planar) Disjoint Paths

In the Disjoint Paths problem, the input consists of an n-vertex graph G...
research
05/13/2021

Disjoint Paths and Connected Subgraphs for H-Free Graphs

The well-known Disjoint Paths problem is to decide if a graph contains k...
research
10/12/2017

Querying Best Paths in Graph Databases

Querying graph databases has recently received much attention. We propos...
research
11/04/2021

A Compound Logic for Modification Problems: Big Kingdoms Fall from Within

We introduce a novel model-theoretic framework inspired from graph modif...
research
04/14/2022

Mortensen Logics

Mortensen introduced a connexive logic commonly known as 'M3V'. M3V is o...

Please sign up or login with your details

Forgot password? Click here to reset