DeepAI AI Chat
Log In Sign Up

Firearm Detection via Convolutional Neural Networks: Comparing a Semantic Segmentation Model Against End-to-End Solutions

by   Alexander Egiazarov, et al.

Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents such as terrorism, general criminal offences, or even domestic violence. One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis. In this paper we conduct a comparison between a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation. We evaluated both models from different points of view, including accuracy, computational and data complexity, flexibility and reliability. Our results show that a semantic segmentation model provides considerable amount of flexibility and resilience in the low data environment compared to classical deep model models, although its configuration and tuning presents a challenge in achieving the same levels of accuracy as an end-to-end model.


An Abstraction Model for Semantic Segmentation Algorithms

Semantic segmentation is a process of classifying each pixel in the imag...

End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB

In this work, we introduce a novel, end-to-end trainable CNN-based archi...

Progressive Adversarial Semantic Segmentation

Medical image computing has advanced rapidly with the advent of deep lea...

End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation

Traditional pedestrian collision warning systems sometimes raise alarms ...

Print Defect Mapping with Semantic Segmentation

Efficient automated print defect mapping is valuable to the printing ind...