Finite-time enclosing control for multiple moving targets: a continuous estimator approach
This work addresses the finite-time enclosing control problem where a set of followers are deployed to encircle and rotate around multiple moving targets with a predefined spacing pattern in finite time. A novel distributed and continuous estimator is firstly proposed to track the geometric center of targets in finite time using only local information for every follower. Then a pair of decentralized control laws for both the relative distance and included angle, respectively, are designed to achieve the desired spacing pattern in finite time based on the output of the proposed estimator. Through both theoretical analysis and simulation validation, we show that the proposed estimator is continuous and therefore can avoid dithering control output while still inheriting the merit of finite-time convergence. The steady errors of the estimator and the enclosing controller are guaranteed to converge to some bounded and adjustable regions around zero.
READ FULL TEXT