Finite-State Classical Mechanics

07/12/2018
by   Norman Margolus, et al.
0

Reversible lattice dynamics embody basic features of physics that govern the time evolution of classical information. They have finite resolution in space and time, don't allow information to be erased, and easily accommodate other structural properties of microscopic physics, such as finite distinct state and locality of interaction. In an ideal quantum realization of a reversible lattice dynamics, finite classical rates of state-change at lattice sites determine average energies and momenta. This is very different than traditional continuous models of classical dynamics, where the number of distinct states is infinite, the rate of change between distinct states is infinite, and energies and momenta are not tied to rates of distinct state change. Here we discuss a family of classical mechanical models that have the informational and energetic realism of reversible lattice dynamics, while retaining the continuity and mathematical framework of classical mechanics. These models may help to clarify the informational foundations of mechanics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro