Fine-grained visual recognition with salient feature detection

08/12/2018
by   Hui Feng, et al.
0

Computer vision based fine-grained recognition has received great attention in recent years. Existing works focus on discriminative part localization and feature learning. In this paper, to improve the performance of fine-grained recognition, we try to precisely locate as many salient parts of object as possible at first. Then, we figure out the classification probability that can be obtained by using separate parts for object classification. Finally, through extracting efficient features from each part and combining them, then feeding to a classifier for recognition, an improved accuracy over state-of-art algorithms has been obtained on CUB200-2011 bird dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset