Finding shortest non-separating and non-disconnecting paths

02/20/2022
by   Yasuaki Kobayashi, et al.
0

For a connected graph G = (V, E) and s, t ∈ V, a non-separating s-t path is a path P between s and t such that the set of vertices of P does not separate G, that is, G - V(P) is connected. An s-t path is non-disconnecting if G - E(P) is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by k. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by k on planar graphs and polynomial-time solvable on chordal graphs if k is the shortest path distance between s and t.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset