Finding Equilibrium in Multi-Agent Games with Payoff Uncertainty

07/10/2020
by   Wenshuo Guo, et al.
0

We study the problem of finding equilibrium strategies in multi-agent games with incomplete payoff information, where the payoff matrices are only known to the players up to some bounded uncertainty sets. In such games, an ex-post equilibrium characterizes equilibrium strategies that are robust to the payoff uncertainty. When the game is one-shot, we show that in zero-sum polymatrix games, an ex-post equilibrium can be computed efficiently using linear programming. We further extend the notion of ex-post equilibrium to stochastic games, where the game is played repeatedly in a sequence of stages and the transition dynamics are governed by an Markov decision process (MDP). We provide sufficient condition for the existence of an ex-post Markov perfect equilibrium (MPE). We show that under bounded payoff uncertainty, the value of any two-player zero-sum stochastic game can be computed up to a tight value interval using dynamic programming.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro