Finding Approximately Convex Ropes in the Plane

01/17/2022
by   Le Hong Trang, et al.
0

The convex rope problem is to find a counterclockwise or clockwise convex rope starting at the vertex a and ending at the vertex b of a simple polygon P, where a is a vertex of the convex hull of P and b is visible from infinity. The convex rope mentioned is the shortest path joining a and b that does not enter the interior of P. In this paper, the problem is reconstructed as the one of finding such shortest path in a simple polygon and solved by the method of multiple shooting. We then show that if the collinear condition of the method holds at all shooting points, then these shooting points form the shortest path. Otherwise, the sequence of paths obtained by the update of the method converges to the shortest path. The algorithm is implemented in C++ for numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset