Filtration Surfaces for Dynamic Graph Classification
Existing approaches for classifying dynamic graphs either lift graph kernels to the temporal domain, or use graph neural networks (GNNs). However, current baselines have scalability issues, cannot handle a changing node set, or do not take edge weight information into account. We propose filtration surfaces, a novel method that is scalable and flexible, to alleviate said restrictions. We experimentally validate the efficacy of our model and show that filtration surfaces outperform previous state-of-the-art baselines on datasets that rely on edge weight information. Our method does so while being either completely parameter-free or having at most one parameter, and yielding the lowest overall standard deviation.
READ FULL TEXT