Fillet-based RRT*: A Rapid Convergence Implementation of RRT* for Curvature Constrained Vehicles

02/22/2023
by   James Swedeen, et al.
0

Rapidly exploring random trees (RRTs) have proven effective in quickly finding feasible solutions to complex motion planning problems. RRT* is an extension of the RRT algorithm that provides probabilistic asymptotic optimality guarantees when using straight-line motion primitives. This work provides extensions to RRT and RRT* that employ fillets as motion primitives, allowing path curvature constraints to be considered when planning. Two fillets are developed, an arc-based fillet that uses circular arcs to generate paths that respect maximum curvature constraints and a spline-based fillet that uses Bezier curves to additionally respect curvature continuity requirements. Planning with these fillets is shown to far exceed the performance of RRT* using Dubin's path motion primitives, approaching the performance of planning with straight-line path primitives. Path sampling heuristics are also introduced to accelerate convergence for nonholonomic motion planning. Comparisons to established RRT* approaches are made using the Open Motion Planning Library (OMPL).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset