FF-NSL: Feed-Forward Neural-Symbolic Learner

06/24/2021 ∙ by Daniel Cunnington, et al. ∙ 0

Inductive Logic Programming (ILP) aims to learn generalised, interpretable hypotheses in a data-efficient manner. However, current ILP systems require training examples to be specified in a structured logical form. This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL), that integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data. FF-NSL uses a pre-trained neural network to extract symbolic facts from unstructured data and an ILP system to learn a hypothesis that performs a downstream classification task. In order to evaluate the applicability of our approach to real-world applications, the framework is evaluated on tasks where distributional shifts are introduced to unstructured input data, for which pre-trained neural networks are likely to predict incorrectly and with high confidence. Experimental results show that FF-NSL outperforms baseline approaches such as a random forest and deep neural networks by learning more accurate and interpretable hypotheses with fewer examples.



There are no comments yet.


page 35

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.