Few-Shot Text Generation with Pattern-Exploiting Training

12/22/2020 ∙ by Timo Schick, et al. ∙ 4

Providing pretrained language models with simple task descriptions or prompts in natural language yields impressive few-shot results for a wide range of text classification tasks when combined with gradient-based learning from examples. In this paper, we show that the underlying idea can also be applied to text generation tasks: We adapt Pattern-Exploiting Training (PET), a recently proposed few-shot approach, for finetuning generative language models on text generation tasks. On several text summarization and headline generation datasets, our proposed variant of PET gives consistent improvements over a strong baseline in few-shot settings.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.