Few-Shot Semantic Segmentation Augmented with Image-Level Weak Annotations

07/03/2020
by   Shuo Lei, et al.
0

Despite the great progress made by deep neural networks in the semantic segmentation task, traditional neural network-based methods typically suffer from a shortage of large amounts of pixel-level annotations. Recent progress in few-shot semantic segmentation tackles the issue by utilizing only a few pixel-level annotated examples. However, these few-shot approaches cannot easily be applied to utilize image-level weak annotations, which can easily be obtained and considerably improve performance in the semantic segmentation task. In this paper, we advance the few-shot segmentation paradigm towards a scenario where image-level annotations are available to help the training process of a few pixel-level annotations. Specifically, we propose a new framework to learn the class prototype representation in the metric space by integrating image-level annotations. Furthermore, a soft masked average pooling strategy is designed to handle distractions in image-level annotations. Extensive empirical results on PASCAL-5i show that our method can achieve 5.1 and 8.2 scribble annotations, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro