Few-shot Semantic Image Synthesis Using StyleGAN Prior

03/27/2021
by   Yuki Endo, et al.
6

This paper tackles a challenging problem of generating photorealistic images from semantic layouts in few-shot scenarios where annotated training pairs are hardly available but pixel-wise annotation is quite costly. We present a training strategy that performs pseudo labeling of semantic masks using the StyleGAN prior. Our key idea is to construct a simple mapping between the StyleGAN feature and each semantic class from a few examples of semantic masks. With such mappings, we can generate an unlimited number of pseudo semantic masks from random noise to train an encoder for controlling a pre-trained StyleGAN generator. Although the pseudo semantic masks might be too coarse for previous approaches that require pixel-aligned masks, our framework can synthesize high-quality images from not only dense semantic masks but also sparse inputs such as landmarks and scribbles. Qualitative and quantitative results with various datasets demonstrate improvement over previous approaches with respect to layout fidelity and visual quality in as few as one- or five-shot settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset