Female Librarians and Male Computer Programmers? Gender Bias in Occupational Images on Digital Media Platforms

12/11/2019 ∙ by Vivek Singh, et al. ∙ 0

Media platforms, technological systems, and search engines act as conduits and gatekeepers for all kinds of information. They often influence, reflect, and reinforce gender stereotypes, including those that represent occupations. This study examines the prevalence of gender stereotypes on digital media platforms and considers how human efforts to create and curate messages directly may impact these stereotypes. While gender stereotyping in social media and algorithms has received some examination in recent literature, its prevalence in different types of platforms (e.g., wiki vs. news vs. social network) and under differing conditions (e.g., degrees of human and machine led content creation and curation) has yet to be studied. This research explores the extent to which stereotypes of certain strongly gendered professions (librarian, nurse, computer programmer, civil engineer) persist and may vary across digital platforms (Twitter, the New York Times online, Wikipedia, and Shutterstock). The results suggest that gender stereotypes are most likely to be challenged when human beings act directly to create and curate content in digital platforms, and that highly algorithmic approaches for curation showed little inclination towards breaking stereotypes. Implications for the more inclusive design and use of digital media platforms, particularly with regard to mediated occupational messaging, are discussed.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 15

page 17

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.