FedPC: Federated Learning for Language Generation with Personal and Context Preference Embeddings

10/07/2022
by   Andrew Silva, et al.
0

Federated learning is a training paradigm that learns from multiple distributed users without aggregating data on a centralized server. Such a paradigm promises the ability to deploy machine-learning at-scale to a diverse population of end-users without first collecting a large, labeled dataset for all possible tasks. As federated learning typically averages learning updates across a decentralized population, there is a growing need for personalization of federated learning systems (i.e conversational agents must be able to personalize to a specific user's preferences). In this work, we propose a new direction for personalization research within federated learning, leveraging both personal embeddings and shared context embeddings. We also present an approach to predict these “preference” embeddings, enabling personalization without backpropagation. Compared to state-of-the-art personalization baselines, our approach achieves a 50% improvement in test-time perplexity using 0.001% of the memory required by baseline approaches, and achieving greater sample- and compute-efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset