Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence

07/25/2020
by   Aaqib Saeed, et al.
0

Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed scalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs, such as electroencephalography, blood volume pulse, accelerometer, and WiFi channel state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary viewpoint (i.e., a scalogram generated with a wavelet transform) align with each other or not through optimizing a contrastive objective. We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully-supervised networks, and it outperforms pre-training with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semi-supervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.

READ FULL TEXT

page 1

page 2

research
07/14/2021

Federated Self-Training for Semi-Supervised Audio Recognition

Federated Learning is a distributed machine learning paradigm dealing wi...
research
02/01/2022

ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition

A major bottleneck in training robust Human-Activity Recognition models ...
research
09/28/2020

Sense and Learn: Self-Supervision for Omnipresent Sensors

Learning general-purpose representations from multisensor data produced ...
research
03/15/2022

SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence

Recent advances in wearable devices and Internet-of-Things (IoT) have le...
research
09/05/2022

Federated Transfer Learning with Multimodal Data

Smart cars, smartphones and other devices in the Internet of Things (IoT...
research
07/27/2019

Multi-task Self-Supervised Learning for Human Activity Detection

Deep learning methods are successfully used in applications pertaining t...
research
05/31/2022

Semi-Supervised Cross-Silo Advertising with Partial Knowledge Transfer

As an emerging secure learning paradigm in leveraging cross-agency priva...

Please sign up or login with your details

Forgot password? Click here to reset