DeepAI AI Chat
Log In Sign Up

Federated Remote Physiological Measurement with Imperfect Data

by   Xin Liu, et al.
University of Washington
FUDAN University

The growing need for technology that supports remote healthcare is being acutely highlighted by an aging population and the COVID-19 pandemic. In health-related machine learning applications the ability to learn predictive models without data leaving a private device is attractive, especially when these data might contain features (e.g., photographs or videos of the body) that make identifying a subject trivial and/or the training data volume is large (e.g., uncompressed video). Camera-based remote physiological sensing facilitates scalable and low-cost measurement, but is a prime example of a task that involves analysing high bit-rate videos containing identifiable images and sensitive health information. Federated learning enables privacy-preserving decentralized training which has several properties beneficial for camera-based sensing. We develop the first mobile federated learning camera-based sensing system and show that it can perform competitively with traditional state-of-the-art supervised approaches. However, in the presence of corrupted data (e.g., video or label noise) from a few devices the performance of weight averaging quickly degrades. To address this, we leverage knowledge about the expected noise profile within the video to intelligently adjust how the model weights are averaged on the server. Our results show that this significantly improves upon the robustness of models even when the signal-to-noise ratio is low


Cross-device Federated Learning for Mobile Health Diagnostics: A First Study on COVID-19 Detection

Federated learning (FL) aided health diagnostic models can incorporate d...

MobilePhys: Personalized Mobile Camera-Based Contactless Physiological Sensing

Camera-based contactless photoplethysmography refers to a set of popular...

Motion Matters: Neural Motion Transfer for Better Camera Physiological Sensing

Machine learning models for camera-based physiological measurement can h...

Constrained Differentially Private Federated Learning for Low-bandwidth Devices

Federated learning becomes a prominent approach when different entities ...

The Benefit of Distraction: Denoising Remote Vitals Measurements using Inverse Attention

Attention is a powerful concept in computer vision. End-to-end networks ...

DRNet: Decomposition and Reconstruction Network for Remote Physiological Measurement

Remote photoplethysmography (rPPG) based physiological measurement has g...