Feature Level Fusion from Facial Attributes for Face Recognition

09/28/2019
by   Mohammad Rasool Izadi, et al.
7

We introduce a deep convolutional neural networks (CNN) architecture to classify facial attributes and recognize face images simultaneously via a shared learning paradigm to improve the accuracy for facial attribute prediction and face recognition performance. In this method, we use facial attributes as an auxiliary source of information to assist CNN features extracted from the face images to improve the face recognition performance. Specifically, we use a shared CNN architecture that jointly predicts facial attributes and recognize face images simultaneously via a shared learning parameters, and then we use facial attribute features an an auxiliary source of information concatenated by face features to increase the discrimination of the CNN for face recognition. This process assists the CNN classifier to better recognize face images. The experimental results show that our model increases both the face recognition and facial attribute prediction performance, especially for the identity attributes such as gender and race. We evaluated our method on several standard datasets labeled by identities and face attributes and the results show that the proposed method outperforms state-of-the-art face recognition models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset