Feature Encodings for Gradient Boosting with Automunge

09/25/2022
by   Nicholas J. Teague, et al.
0

Selecting a default feature encoding strategy for gradient boosted learning may consider metrics of training duration and achieved predictive performance associated with the feature representations. The Automunge library for dataframe preprocessing offers a default of binarization for categoric features and z-score normalization for numeric. The presented study sought to validate those defaults by way of benchmarking on a series of diverse data sets by encoding variations with tuned gradient boosted learning. We found that on average our chosen defaults were top performers both from a tuning duration and a model performance standpoint. Another key finding was that one hot encoding did not perform in a manner consistent with suitability to serve as a categoric default in comparison to categoric binarization. We present here these and further benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro