Feasibility of Haralick's Texture Features for the Classification of Chromogenic In-situ Hybridization Images

07/01/2021
by   Stoyan Pavlov, et al.
0

This paper presents a proof of concept for the usefulness of second-order texture features for the qualitative analysis and classification of chromogenic in-situ hybridization whole slide images in high-throughput imaging experiments. The challenge is that currently, the gold standard for gene expression grading in such images is expert assessment. The idea of the research team is to use different approaches in the analysis of these images that will be used for structural segmentation and functional analysis in gene expression. The article presents such perspective idea to select a number of textural features that are going to be used for classification. In our experiment, natural grouping of image samples (tiles) depending on their local texture properties was explored in an unsupervised classification procedure. The features are reduced to two dimensions with fuzzy c-means clustering. The overall conclusion of this experiment is that Haralick features are a viable choice for classification and analysis of chromogenic in-situ hybridization image data. The principal component analysis approach produced slightly more "understandable" from an annotator's point of view classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro