FastGAE: Fast, Scalable and Effective Graph Autoencoders with Stochastic Subgraph Decoding
Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embedding methods, but suffer from scalability issues. In this paper, we introduce FastGAE, a general framework to scale graph AE and VAE to large graphs with millions of nodes and edges. Our strategy, based on node sampling and subgraph decoding, significantly speeds up the training of graph AE and VAE while preserving or even improving performances. We demonstrate the effectiveness of FastGAE on numerous real-world graphs, outperforming the few existing approaches to scale graph AE and VAE by a wide margin.
READ FULL TEXT