Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

10/31/2015
by   Mohammad Emtiyaz Khan, et al.
0

Several recent works have explored stochastic gradient methods for variational inference that exploit the geometry of the variational-parameter space. However, the theoretical properties of these methods are not well-understood and these methods typically only apply to conditionally-conjugate models. We present a new stochastic method for variational inference which exploits the geometry of the variational-parameter space and also yields simple closed-form updates even for non-conjugate models. We also give a convergence-rate analysis of our method and many other previous methods which exploit the geometry of the space. Our analysis generalizes existing convergence results for stochastic mirror-descent on non-convex objectives by using a more general class of divergence functions. Beyond giving a theoretical justification for a variety of recent methods, our experiments show that new algorithms derived in this framework lead to state of the art results on a variety of problems. Further, due to its generality, we expect that our theoretical analysis could also apply to other applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset