Faster ICA under orthogonal constraint

11/29/2017 ∙ by Pierre Ablin, et al. ∙ 0

Independent Component Analysis (ICA) is a technique for unsupervised exploration of multi-channel data widely used in observational sciences. In its classical form, ICA relies on modeling the data as a linear mixture of non-Gaussian independent sources. The problem can be seen as a likelihood maximization problem. We introduce Picard-O, a preconditioned L-BFGS strategy over the set of orthogonal matrices, which can quickly separate both super- and sub-Gaussian signals. It returns the same set of sources as the widely used FastICA algorithm. Through numerical experiments, we show that our method is faster and more robust than FastICA on real data.

READ FULL TEXT

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.