Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size

12/01/2019 ∙ by Ke Ma, et al. ∙ 0

Learning representation from relative similarity comparisons, often called ordinal embedding, gains rising attention in recent years. Most of the existing methods are based on semi-definite programming (SDP), which is generally time-consuming and degrades the scalability, especially confronting large-scale data. To overcome this challenge, we propose a stochastic algorithm called SVRG-SBB, which has the following features: i) achieving good scalability via dropping positive semi-definite (PSD) constraints as serving a fast algorithm, i.e., stochastic variance reduced gradient (SVRG) method, and ii) adaptive learning via introducing a new, adaptive step size called the stabilized Barzilai-Borwein (SBB) step size. Theoretically, under some natural assumptions, we show the O(1/T) rate of convergence to a stationary point of the proposed algorithm, where T is the number of total iterations. Under the further Polyak-Łojasiewicz assumption, we can show the global linear convergence (i.e., exponentially fast converging to a global optimum) of the proposed algorithm. Numerous simulations and real-world data experiments are conducted to show the effectiveness of the proposed algorithm by comparing with the state-of-the-art methods, notably, much lower computational cost with good prediction performance.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.