Fast rates for support vector machines using Gaussian kernels

08/14/2007
by   Ingo Steinwart, et al.
0

For binary classification we establish learning rates up to the order of n^-1 for support vector machines (SVMs) with hinge loss and Gaussian RBF kernels. These rates are in terms of two assumptions on the considered distributions: Tsybakov's noise assumption to establish a small estimation error, and a new geometric noise condition which is used to bound the approximation error. Unlike previously proposed concepts for bounding the approximation error, the geometric noise assumption does not employ any smoothness assumption.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset