Fast rates for noisy interpolation require rethinking the effects of inductive bias

03/07/2022
by   Konstantin Donhauser, et al.
5

Good generalization performance on high-dimensional data crucially hinges on a simple structure of the ground truth and a corresponding strong inductive bias of the estimator. Even though this intuition is valid for regularized models, in this paper we caution against a strong inductive bias for interpolation in the presence of noise: Our results suggest that, while a stronger inductive bias encourages a simpler structure that is more aligned with the ground truth, it also increases the detrimental effect of noise. Specifically, for both linear regression and classification with a sparse ground truth, we prove that minimum ℓ_p-norm and maximum ℓ_p-margin interpolators achieve fast polynomial rates up to order 1/n for p > 1 compared to a logarithmic rate for p = 1. Finally, we provide experimental evidence that this trade-off may also play a crucial role in understanding non-linear interpolating models used in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset