styleswap
code for Fast Patchbased Style Transfer of Arbitrary Style
view repo
Artistic style transfer is an image synthesis problem where the content of an image is reproduced with the style of another. Recent works show that a visually appealing style transfer can be achieved by using the hidden activations of a pretrained convolutional neural network. However, existing methods either apply (i) an optimization procedure that works for any style image but is very expensive, or (ii) an efficient feedforward network that only allows a limited number of trained styles. In this work we propose a simpler optimization objective based on local matching that combines the content structure and style textures in a single layer of the pretrained network. We show that our objective has desirable properties such as a simpler optimization landscape, intuitive parameter tuning, and consistent framebyframe performance on video. Furthermore, we use 80,000 natural images and 80,000 paintings to train an inverse network that approximates the result of the optimization. This results in a procedure for artistic style transfer that is efficient but also allows arbitrary content and style images.
READ FULL TEXT VIEW PDF
Arbitrary style transfer is an important problem in computer vision that...
read it
Given a random pair of images, an arbitrary style transfer method extrac...
read it
Artistically controlling fluids has always been a challenging task.
Opti...
read it
In this paper, we present a learningbased method to the keyframebased ...
read it
The ability to synthesize style and content of different images to form ...
read it
Prior normalization methods rely on affine transformations to produce
ar...
read it
We present StyleBlitan efficient examplebased style transfer algorit...
read it
code for Fast Patchbased Style Transfer of Arbitrary Style
Famous artists are typically renowned for a particular artistic style, which takes years to develop. Even once perfected, a single piece of art can take days or even months to create. This motivates us to explore efficient computational strategies for creating artistic images. While there is a large classical literature on texture synthesis methods that create artwork from a blank canvas [8, 20, 22, 35], several recent approaches study the problem of transferring the desired style from one image onto the structural content of another image. This approach is known as artistic style transfer.
The vague notion of artistic style is difficult to quantitatively capture. Early works define style using similarity measures or local statistics based on the pixel values [7, 8, 13, 14, 20, 24]
. However, recent methods that achieve impressive visual quality come from the use of convolutional neural networks (CNN) for feature extraction
[9, 10, 11, 21]. The success of these methods has even created a market for mobile applications that can stylize userprovided images on demand [15, 29, 32].Despite this renewed interest, the actual process of style transfer is based on solving a complex optimization procedure, which can take minutes on today’s hardware. A typical speedup solution is to train another neural network that approximates the optimum of the optimization in a single feedforward pass [6, 17, 33, 34]. While much faster, existing works that use this approach sacrifice the versatility of being able to perform style transfer with any given style image, as the feedforward network cannot generalize beyond its trained set of images. Due to this limitation, existing applications are either timeconsuming or limited in the number of provided styles, depending on the method of style transfer.
In this work we propose a method that addresses these limitations: a new method for artistic style transfer that is efficient but is not limited to a finite set of styles. To accomplish this, we define a new optimization objective for style transfer that notably only depends on one layer of the CNN (as opposed to existing methods that use multiple layers). The new objective leads to visuallyappealing results while this simple restriction allows us to use an “inverse network” to deterministically invert the activations from the stylized layer to yield the stylized image.
Section 2 reviews related work while Sections 34 describe our new optimization objective that combines style and content statistics in a single activation layer. We then propose a method of training a neural network that can invert the activations to yield an image. Section 5 presents experiments with the new method, showing it has desirable properties not found in existing formulations.
Style Transfer as Optimization. Gatys et al. [11]
formulates style transfer as an optimization problem that combines texture synthesis with content reconstruction. Their formulation involves additive loss functions placed on multiple layers of a pretrained CNN, with some loss functions synthesizing the textures of the style image and some loss functions reconstructing the content image. Gradients are computed by backpropagation and gradientbased optimization is carried out to solve for the stylized image. An alternative approach uses patchbased similarity matching between the content and style images
[9, 10, 21]. In particular, Li and Wand [21] constructs patchbased loss functions, where each synthetic patch has a nearest neighbour target patch that it must match. This type of patchmatching loss function is then combined additively with Gatys et al.’s formulation. While these approaches allow arbitrary style images, the optimization frameworks used by these methods makes it slow to generate the stylized image. This is particularly relevant for the case of video where we want to style a huge number of frames.Feedforward Style Networks As mentioned previously, it is possible to train a neural network that approximates the optimum of Gatys et al.’s loss function for one or more fixed styles [6, 17, 33, 34]. This yields a much faster method, but these methods need to be retrained for each new style.
Style Transfer for Video. Ruder et al. [30] introduces a temporal loss function that, when used additively with Gatys et al.’s loss functions, can perform style transfer for videos with temporal consistency. Their loss function relies on optical flow algorithms for gluing the style in place across nearby frames. This results in an order of maginitude slowdown compared to framebyframe application of style transfer.
Inverting Deep Representations. Several works have trained inverse networks of pretrained convolutional neural networks [3, 26]
for the goal of visualization. Other works have trained inverse networks as part of an autoencoder
[19, 27, 36]. To the best of our knowledge, all existing inverse networks are trained with a dataset of images and a loss function placed in RGB space.In comparison to existing style transfer approaches, we propose a method for directly constructing the target activations for a single layer in a pretrained CNN. Like Li and Wand [21], we make use of a criteria for finding best matching patches in the activation space. However, our method is able to directly construct the entire activation target. This deterministic procedure allows us to easily adapt to video, without the need to rely on optical flow for fixing consistency issues. In addition to optimization, we propose a feedforward style transfer procedure by inverting the pretrained CNN. Unlike existing feedforward style transfer approaches, our method is not limited to specifically trained styles and can easily adapt to arbitary content and style images. Unlike existing CNN inversion methods, our method of training does not use a pixellevel loss, but instead uses a loss on the activations. By using a particular training setup (see Section 4.1), this inverse network is even able to invert activations that are outside the usual range of the CNN activiations.
The main component of our style transfer method is a patchbased operation for constructing the target activations in a single layer, given the style and content images. We refer to this procedure as “swapping the style” of an image, as the content image is replaced patchbypatch by the style image. We first present this operation at a high level, followed by more details on our implementation.
Let and denote the RGB representations of the content and style images (respectively), and let be the function represented by a fully convolutional part of a pretrained CNN that maps an image from RGB to some intermediate activation space. After computing the activations, and , the style swap procedure is as follows:
Extract a set of patches for both content and style activations, denoted by and , where and are the number of extracted patches. The extracted patches should have sufficient overlap, and contain all channels of the activations.
For each content activation patch, determine a closestmatching style patch based on the normalized crosscorrelation measure,
(1) 
Swap each content activation patch with its closestmatching style patch .
Reconstruct the complete content activations, which we denote by , by averaging overlapping areas that may have different values due to step 3.
This operation results in hidden activations corresponding to a single image with the structure of the content image, but with textures taken from the style image.
To give an efficient implementation, we show that the entire style swap operation can be implemented as a network with three operations: (i) a 2D convolutional layer, (ii) a channelwise argmax, and (iii) a 2D transposed convolutional layer. Implementation of style swap is then as simple as using existing efficient implementations of 2D convolutions and transposed convolutions^{1}^{1}1
The transposed convolution is also often referred to as a “fractionallystrided” convolution, a “backward” convolution, an “upconvolution”, or a ”deconvolution”.
.To concisely describe the implementation, we reindex the content activation patches to explicitly denote spatial structure. In particular, we’ll let be the number of feature channels of , and let denote the patch where is the patch size.
Notice that the normalization term for content activation patches is constant with respect to the argmax operation, so (1) can be rewriten as
(2) 
The lack of a normalization for the content activation patches simplifies computation and allows our use of 2D convolutional layers. The following three steps describe our implementation and are illustrated in Figure 2:
The tensor
can be computed by a single 2D convolution by using the normalized style activations patches as convolution filters and as input. The computed has spatial locations and feature channels. At each spatial location,is a vector of crosscorrelations between a content activation patch and all style activation patches.
To prepare for the 2D transposed convolution, we replace each vector by a onehot vector corresponding to the best matching style activation patch.
(3) 
The last operation for constructing is a 2D transposed convolution with as input and unnormalized style activation patches as filters. At each spatial location, only the best matching style activation patch is in the output, as the other patches are multiplied by zero.
Note that a transposed convolution will sum up the values from overlapping patches. In order to average these values, we perform an elementwise division on each spatial location of the output by the number of overlapping patches. Consequently, we do not need to impose that the argmax in (3) has a unique solution, as multiple argmax solutions can simply be interpreted as adding more overlapping patches.
, and also in RGB space. Due to the naming convention of VGG19, “relu
_1” refers to the first ReLU layer after the th maxpooling layer. The style swap operation uses patches of size and stride , and then the RGB image is constructed using optimization.The pixel representation of the stylized image can be computed by placing a loss function on the activation space with target activations . Similar to prior works on style transfer [11, 21], we use the squarederror loss and define our optimization objective as
(4) 
where we’ll say that the synthesized image is of dimension by by , is the Frobenius norm, and is the total variation regularization term widely used in image generation methods [1, 17, 26]. Because contains multiple maxpooling operations that downsample the image, we use this regularization as a natural image prior, obtaining spatially smoother results for the reupsampled image. The total variation regularization is as follows:
(5) 
Since the function is part of a pretrained CNN and is at least once subdifferentiable, (4) can be computed using standard subgradientbased optimization methods.
Unfortunately, the cost of solving the optimization problem to compute the stylized image might be too high in applications such as video stylization. We can improve optimization speed by approximating the optimum using another neural network. Once trained, this network can then be used to produce stylized images much faster, and we will in particular train this network to have the versatility of being able to use new content and new style images.
The main purpose of our inverse network is to approximate an optimum of the loss function in (4) for any target activations. We therefore define the optimal inverse function as:
(6) 
where represents a deterministic function and
is a random variable representing target activations. The total variation regularization term is added as a natural image prior similar to (
4).A couple problems arise due to the properties of the pretrained convolutional neural network.
Noninjective. The CNN defining contains convolutional, maxpooling, and ReLU layers. These functions are manytoone, and thus do not have welldefined inverse functions. Akin to existing works that use inverse networks [4, 25, 36], we instead train an approximation to the inverse relation by a parametric neural network.
(7) 
where denotes the parameters of the neural network and are activation features from a dataset of size . This objective function leads to unsupervised training of the neural network as the optimum of (4) does not need to be known. We place the description of our inverse network architecture in the appendix.
Nonsurjective. The style swap operation produces target activations that may be outside the range of
due to the interpolation. This would mean that if the inverse network is only trained with real images then the inverse network may only be able to invert activations in the range of
. Since we would like the inverse network to invert style swapped activations, we augment the training set to include these activations. More precisely, given a set of training images (and their corresponding activations), we augment this training set with styleswapped activations based on pairs of images.Once trained, the inverse network can be used to replace the optimization procedure. Thus our proposed feedforward procedure consists of the following steps:
Compute and .
Obtain by style swapping.
Feed into a trained inverse network.
This procedure is illustrated in Figure 4. As described in Section 3.2, style swapping can be implemented as a (nondifferentiable) convolutional neural network. As such, the entire feedforward procedure can be seen as a neural net with individually trained parts. Compared to existing feedforward approaches [6, 17, 33, 34], the biggest advantage of our feedforward procedure is the ability to use new style images with only a single trained inverse network.
In this section, we analyze properties of the proposed style transfer and inversion methods. We use the Torch7 framework [2] to implement our method^{2}^{2}2Code available at https://github.com/rtqichen/styleswap, and use existing open source implementations of prior works [16, 21, 30] for comparison.


Target Layer. The effects of style swapping in different layers of the VGG19 network are shown in Figure 3. In this figure the RGB images are computed by optimization as described in Section 3. We see that while we can style swap directly in the RGB space, the result is nothing more than a recolor. As we choose a target layer that is deeper in the network, textures of the style image are more pronounced. We find that style swapping on the “relu3_1” layer provides the most visually pleasing results, while staying structurally consistent with the content. We restrict our method to the “relu3_1” layer in the following experiments and in the inverse network training. Qualitative results are shown in Figure 10.
Consistency. Our style swapping approach concatenates the content and style information into a single target feature vector, resulting in an easier optimization formulation compared to other approaches. As a result, we find that the optimization algorithm is able to reach the optimum of our formulation in less iterations than existing formulations while consistently reaching the same optimum. Figures 5 and 6 show the difference in optimization between our formulation and existing works under random initializations. Here we see that random initializations have almost no effect on the stylized result, indicating that we have far fewer local optima than other style transfer objectives.
Straightforward Adaptation to Video. This consistency property is advantageous when stylizing videos frame by frame. Frames that are the same will result in the same stylized result, while consecutive frames will be stylized in similar ways. As a result, our method is able to adapt to video without any explicit gluing procedure like optical flow [30]. We place stylized videos in the code repository.
Simple Intuitive Tuning. A natural way to tune the degree of stylization (compared to preserving the content) in the proposed approach is to modify the patch size. Figure 7 qualitatively shows the relationship between patch size and the styleswapped result. As the patch size increases, more of the structure of the content image is lost and replaced by textures in the style image.
Here we describe our training of an inverse network that computes an approximate inverse function of the pretrained VGG19 network [31]. More specifically, we invert the truncated network from the input layer up to layer “relu3_1”. The network architecture is placed in the appendix.
Dataset. We train using the Microsoft COCO (MSCOCO) dataset [23] and a dataset of paintings sourced from wikiart.org and hosted by Kaggle [5]. Each dataset has roughly natural images and paintings, respectively. Since typically the content images are natural images and style images are paintings, we combine the two datasets so that the network can learn to recreate the structure and texture of both categories of images. Additionally, the explicit categorization of natural image and painting gives respective content and style candidates for the augmentation described in Section 4.1.
Training. We resize each image to pixels (corresponding to activations of size
) and train for approximately 2 epochs over each dataset. Note that even though we restrict the size of our training images (and corresponding activations), the inverse network is fully convolutional and can be applied to arbitrarysized activations after training.
We construct each minibatch by taking 2 activation samples from natural images and 2 samples from paintings. We augment the minibatch with 4 styleswapped activations using all pairs of natural images and paintings in the minibatch. We calculate subgradients using backpropagation on (7
) with the total variance regularization coefficient
(the method is not particularly sensitive to this choice), and we update parameters of the network using the Adam optimizer [18] with a fixed learning rate of .Result. Figure 8 shows quantitative approximation results using 2000 fullsized validation images from MSCOCO and 6 fullsized style images. Though only trained on images of size , we achieve reasonable results for arbitrary fullsized images. We additionally compare against an inverse network that has the same architecture but was not trained with the augmentation. As expected, the network that never sees styleswapped activations during training performs worse than the network with the augmented training set.
Method  N. Iters.  Time/Iter. (s)  Total (s) 

Gatys et al. [11]  500  0.1004  50.20 
Li and Wand [21]  200  0.6293  125.86 
Style Swap (Optim)  100  0.0466  4.66 
Style Swap (InvNet)  1  1.2483  1.25 
on a GeForce GTX 980 Ti. Note that the number of iterations for optimizationbased approaches should only be viewed as a very rough estimate.
Computation times of existing style transfer methods are listed in Table 1. Compared to optimizationbased methods, our optimization formula is easier to solve and requires less time per iteration, likely due to only using one layer of the pretrained VGG19 network. Other methods use multiple layers and also deeper layers than we do.
We show the percentage of computation time spent by different parts of our feedforward procedure in Figures 8(a) and 8(c). For any nontrivial image sizes, the style swap procedure requires much more time than the other neural networks. This is due to the style swap procedure containing two convolutional layers where the number of filters is the number of style patches. The number of patches increases linearly with the number of pixels of the image, with a constant that depends on the number of pooling layers and the stride at which the patches are extracted. Therefore, it is no surprise that style image size has the most effect on computation time (as shown in Figures 8(a) and 8(b)).
Interestingly, it seems that the computation time stops increasing at some point even when the content image size increases (Figure 8(d)), likely due to parallelism afforded by the implementation. This suggests that our procedure can handle large image sizes as long as the number of style patches is kept manageable. It may be desirable to perform clustering on the style patches to reduce the number of patches, or use alternative implementations such as fast approximate nearest neighbour search methods [12, 28].
We present a new CNNbased method of artistic style transfer that aims to be both fast and adaptable to arbitrary styles. Our method concatenates both content and style information into a single layer of the CNN, by swapping the textures of the content image with those of the style image. The simplistic nature of our method allows us to train an inverse network that can not only approximate the result in much less time, but can also generalize beyond its trained set of styles. Despite the onelayer restriction, our method can still produce visually pleasing images. Furthermore, the method has an intuitive tuning parameters (the patch size) and its consistency allows simple framebyframe application to videos.
While our feedforward method does not compete with the feedforward approach of Johnson et al. [17] in terms of speed, it should be noted that the biggest advantage of our method is the ability to stylize using new style images, whereas Johnson et al.’s method requires training a new neural network for each style image. We’ve shown that our inverse method can generalize beyond its training set (Figure 8), while another useful application is the ability to change the size of the style image without retraining the inverse network.
Some drawbacks of the proposed style swap procedure include lack of a global style measurement and lack of a similarity measure for neighboring patches, both in the spatial domain and the temporal domain. These simplifications sacrifice quality for efficiency, but can occassionally lead to a local flickering effect when applied to videos framebyframe. It may be desirable to look for ways to increase quality while keeping the efficient and versatile nature of our algorithm.






Torch7: A matlablike environment for machine learning.
In BigLearn, NIPS Workshop, 2011.Perceptual Losses for RealTime Style Transfer and SuperResolution.
Arxiv, 2016.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pages 3431–3440, 2015.Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240, 2014.The architecture of the truncated VGG19 network used in the experiments is shown in Table A2, and the inverse network architecture is shown in Table A2. It is possible that better architectures achieve better results, as we did not try many different types of convolutional neural network architectures.
The rectified linear unit (ReLU) layer is an elementwise function
.The instance norm (InstanceNorm) layer standardizes each feature channel independently to have mean and a standard deviation of . This layer has shown impressive performance in image generation networks [34].
Maxpooling layers downsample by a factor of by using filter sizes of and stride of .
Nearest neighbor (NN) upsampling layers upsample by a factor of by using filter sizes of and stride of .
Layer Type  Activation Dimensions 

Input  
ConvReLU  
ConvReLU  
MaxPooling  
ConvReLU  
ConvReLU  
MaxPooling  
ConvReLU 
Layer Type  Activation Dimensions 

Input  
ConvInstanceNormReLU  
NNUpsampling  
ConvInstanceNormReLU  
ConvInstanceNormReLU  
NNUpsampling  
ConvInstanceNormReLU  
Conv 
Comments
There are no comments yet.