Fast Modeling and Understanding Fluid Dynamics Systems with Encoder-Decoder Networks

06/09/2020
by   Rohan Thavarajah, et al.
0

Is a deep learning model capable of understanding systems governed by certain first principle laws by only observing the system's output? Can deep learning learn the underlying physics and honor the physics when making predictions? The answers are both positive. In an effort to simulate two-dimensional subsurface fluid dynamics in porous media, we found that an accurate deep-learning-based proxy model can be taught efficiently by a computationally expensive finite-volume-based simulator. We pose the problem as an image-to-image regression, running the simulator with different input parameters to furnish a synthetic training dataset upon which we fit the deep learning models. Since the data is spatiotemporal, we compare the performance of two alternative treatments of time; a convolutional LSTM versus an autoencoder network that treats time as a direct input. Adversarial methods are adopted to address the sharp spatial gradient in the fluid dynamic problems. Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation, which allows us to explore more scenarios with a much larger parameter space given the same time. It is shown that the improved forward computation efficiency is particularly valuable in solving inversion problems, where the physics model has unknown parameters to be determined by history matching. By computing the pixel-level attention of the trained model, we quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration. We assess the efficacy of the machine learning surrogate in terms of its training speed and accuracy. The network can be trained within minutes using limited training data and achieve accuracy that scales desirably with the amount of training data supplied.

READ FULL TEXT

page 5

page 6

page 7

research
07/28/2020

Deep-Learning based Inverse Modeling Approaches: A Subsurface Flow Example

Deep-learning has achieved good performance and shown great potential fo...
research
08/15/2022

Prospects of federated machine learning in fluid dynamics

Physics-based models have been mainstream in fluid dynamics for developi...
research
10/24/2021

Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties

Identifying the heterogeneous conductivity field and reconstructing the ...
research
03/12/2022

Generic Lithography Modeling with Dual-band Optics-Inspired Neural Networks

Lithography simulation is a critical step in VLSI design and optimizatio...
research
05/06/2020

Modeling nanoconfinement effects using active learning

Predicting the spatial configuration of gas molecules in nanopores of sh...
research
12/22/2019

Efficient Parameter Sampling for Neural Network Construction

The customizable nature of deep learning models have allowed them to be ...
research
02/10/2021

Computationally Efficient Multiscale Neural Networks Applied To Fluid Flow In Complex 3D Porous Media

The permeability of complex porous materials can be obtained via direct ...

Please sign up or login with your details

Forgot password? Click here to reset