Fast Minimal Presentations of Bi-graded Persistence Modules

10/29/2020 ∙ by Michael Kerber, et al. ∙ 0

Multi-parameter persistent homology is a recent branch of topological data analysis. In this area, data sets are investigated through the lens of homology with respect to two or more scale parameters. The high computational cost of many algorithms calls for a preprocessing step to reduce the input size. In general, a minimal presentation is the smallest possible representation of a persistence module. Lesnick and Wright proposed recently an algorithm (the LW-algorithm) for computing minimal presentations based on matrix reduction. In this work, we propose, implement and benchmark several improvements over the LW-algorithm. Most notably, we propose the use of priority queues to avoid extensive scanning of the matrix columns, which constitutes the computational bottleneck in the LW-algorithm, and we combine their algorithm with ideas from the multi-parameter chunk algorithm by Fugacci and Kerber. Our extensive experiments show that our algorithm outperforms the LW-algorithm and computes the minimal presentation for data sets with millions of simplices within a few seconds. Our software is publicly available.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.