DeepAI AI Chat
Log In Sign Up

Fast Fluid Simulations in 3D with Physics-Informed Deep Learning

by   Nils Wandel, et al.

Physically plausible fluid simulations play an important role in modern computer graphics. However, in order to achieve real-time performance, computational speed needs to be traded-off with physical accuracy. Surrogate fluid models based on neural networks are a promising candidate to achieve both: fast fluid simulations and high physical accuracy. However, these approaches do not generalize to new fluid domains, rely on massive amounts of training data or require complex pipelines for training and inference. In this work, we present a 3D extension to our recently proposed fluid training framework, which addresses the aforementioned issues in 2D. Our method allows to train fluid models that generalize to new fluid domains without requiring fluid simulation data and simplifies the training and inference pipeline as the fluid models directly map a fluid state and boundary conditions at a moment t to a subsequent state at t+dt. To this end, we introduce a physics-informed loss function based on the residuals of the Navier-Stokes equations on a 3D staggered Marker-and-Cell grid. Furthermore, we propose an efficient 3D U-Net based architecture in order to cope with the high demands of 3D grids in terms of memory and computational complexity. Our method allows for real-time fluid simulations on a 128x64x64 grid that include various fluid phenomena such as the Magnus effect or Karman vortex streets, and generalize to domain geometries not considered during training. Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.


page 7

page 8


Unsupervised Deep Learning of Incompressible Fluid Dynamics

Fast and stable fluid simulations are an essential prerequisite for appl...

Stacked Generative Machine Learning Models for Fast Approximations of Steady-State Navier-Stokes Equations

Computational fluid dynamics (CFD) simulations are broadly applied in en...

Adaptive Position-Based Fluids: Improving Performance of Fluid Simulations for Real-Time Applications

The Position Based Fluids (PBF) method is a state-of-the-art approach fo...

Physics-informed Reinforcement Learning for Perception and Reasoning about Fluids

Learning and reasoning about physical phenomena is still a challenge in ...

Lattice Gas Cellular Automata for Computational Fluid Animation

The past two decades showed a rapid growing of physically-based modeling...

Accelerating Eulerian Fluid Simulation With Convolutional Networks

Efficient simulation of the Navier-Stokes equations for fluid flow is a ...

Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data

High-fidelity reconstruction of fluids from sparse multiview RGB videos ...

Code Repositories



view repo



view repo