Fast electrostatic solvers for kinetic Monte Carlo simulations
Kinetic Monte Carlo (KMC) is an important computational tool in theoretical physics and chemistry. In contrast to standard Monte Carlo, KMC permits the description of time dependent dynamical processes and is not restricted to systems in equilibrium. Compared to Molecular Dynamics, it allows simulations over significantly longer timescales. Recently KMC has been applied successfully in modelling of novel energy materials such as Lithium-ion batteries and organic/perovskite solar cells. Motivated by this, we consider general solid state systems which contain free, interacting particles which can hop between localised sites in the material. The KMC transition rates for those hops depend on the change in total potential energy of the system. For charged particles this requires the frequent calculation of electrostatic interactions, which is usually the bottleneck of the simulation. To avoid this issue and obtain results in reasonable times, many studies replace the long-range potential by a phenomenological short range approximation, which leads to systematic errors and unphysical results. On the other hand standard electrostatic solvers such as Ewald summation or fast Poisson solvers are highly inefficient in the KMC setup or introduce uncontrollable systematic errors at high resolution. In this paper we describe a new variant of the Fast Multipole Method by Greengard and Rokhlin which overcomes this issue by dramatically reducing computational costs. We construct an algorithm which scales linearly in the number of charges for each KMC step, something which had not been deemed to be possible before. We demonstrate the performance and parallel scalability of the method by implementing it in a performance portable software library. We describe the high-level Python interface of the code, which makes it easy to adapt to specific use cases.
READ FULL TEXT