Fast Density Estimation for Density-based Clustering Methods

09/23/2021
by   Difei Cheng, et al.
0

Density-based clustering algorithms are widely used for discovering clusters in pattern recognition and machine learning since they can deal with non-hyperspherical clusters and are robustness to handle outliers. However, the runtime of density-based algorithms is heavily dominated by finding neighbors and calculating the density of each point which is time-consuming. To address this issue, this paper proposes a density-based clustering framework by using the fast principal component analysis, which can be applied to density based methods to prune unnecessary distance calculations when finding neighbors and estimating densities. By applying this clustering framework to the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, an improved DBSCAN (called IDBSCAN) is obtained, which preserves the advantage of DBSCAN and meanwhile, greatly reduces the computation of redundant distances. Experiments on five benchmark datasets demonstrate that the proposed IDBSCAN algorithm improves the computational efficiency significantly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset