Fast-Convergent Dynamics for Distributed Resource Allocation Over Sparse Time-Varying Networks
In this paper, distributed dynamics are deployed to solve resource allocation over time-varying multi-agent networks. The state of each agent represents the amount of resources used/produced at that agent while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by reducing the total cost functions subject to fixed amount of total resources. The information of each agent is restricted to its own state and cost function and those of its immediate neighbors. This is motivated by distributed applications such as in mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. The non-Lipschitz dynamics proposed in this work shows fast convergence as compared to the linear and some nonlinear solutions in the literature. Further, the multi-agent network connectivity is more relaxed in this paper. To be more specific, the proposed dynamics even reaches optimal solution over time-varying disconnected undirected networks as far as the union of these networks over some bounded non-overlapping time-intervals includes a spanning-tree. The proposed convergence analysis can be applied for similar 1st-order resource allocation nonlinear dynamics. We provide simulations to verify our results.
READ FULL TEXT