Fast BTG-Forest-Based Hierarchical Sub-sentential Alignment

11/20/2017
by   Hao Wang, et al.
0

In this paper, we propose a novel BTG-forest-based alignment method. Based on a fast unsupervised initialization of parameters using variational IBM models, we synchronously parse parallel sentences top-down and align hierarchically under the constraint of BTG. Our two-step method can achieve the same run-time and comparable translation performance as fast_align while it yields smaller phrase tables. Final SMT results show that our method even outperforms in the experiment of distantly related languages, e.g., English-Japanese.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro