Fast and Robust Linear Motion Deblurring

12/10/2012
by   Martin Welk, et al.
0

We investigate efficient algorithmic realisations for robust deconvolution of grey-value images with known space-invariant point-spread function, with emphasis on 1D motion blur scenarios. The goal is to make deconvolution suitable as preprocessing step in automated image processing environments with tight time constraints. Candidate deconvolution methods are selected for their restoration quality, robustness and efficiency. Evaluation of restoration quality and robustness on synthetic and real-world test images leads us to focus on a combination of Wiener filtering with few iterations of robust and regularised Richardson-Lucy deconvolution. We discuss algorithmic optimisations for specific scenarios. In the case of uniform linear motion blur in coordinate direction, it is possible to achieve real-time performance (less than 50 ms) in single-threaded CPU computation on images of 256×256 pixels. For more general space-invariant blur settings, still favourable computation times are obtained. Exemplary parallel implementations demonstrate that the proposed method also achieves real-time performance for general 1D motion blurs in a multi-threaded CPU setting, and for general 2D blurs on a GPU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset