Fast and Accurate k-means++ via Rejection Sampling

12/22/2020
by   Vincent Cohen-Addad, et al.
0

k-means++ <cit.> is a widely used clustering algorithm that is easy to implement, has nice theoretical guarantees and strong empirical performance. Despite its wide adoption, k-means++ sometimes suffers from being slow on large data-sets so a natural question has been to obtain more efficient algorithms with similar guarantees. In this paper, we present a near linear time algorithm for k-means++ seeding. Interestingly our algorithm obtains the same theoretical guarantees as k-means++ and significantly improves earlier results on fast k-means++ seeding. Moreover, we show empirically that our algorithm is significantly faster than k-means++ and obtains solutions of equivalent quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro