Fast 3D Modeling of Anthropomorphic Robotic Hands Based on A Multi-layer Deformable Design

by   Li Tian, et al.

Current anthropomorphic robotic hands mainly focus on improving their dexterity by devising new mechanical structures and actuation systems. However, most of them rely on a single structure/system (e.g., bone-only) and ignore the fact that the human hand is composed of multiple functional structures (e.g., skin, bones, muscles, and tendons). This not only increases the difficulty of the design process but also lowers the robustness and flexibility of the fabricated hand. Besides, other factors like customization, the time and cost for production, and the degree of resemblance between human hands and robotic hands, remain omitted. To tackle these problems, this study proposes a 3D printable multi-layer design that models the hand with the layers of skin, tissues, and bones. The proposed design first obtains the 3D surface model of a target hand via 3D scanning, and then generates the 3D bone models from the surface model based on a fast template matching method. To overcome the disadvantage of the rigid bone layer in deformation, the tissue layer is introduced and represented by a concentric tube based structure, of which the deformability can be explicitly controlled by a parameter. Besides, a low-cost yet effective underactuated system is adopted to drive the fabricated hand. The proposed design is tested with 33 widely used object grasping types, as well as special objects like fragile silken tofu, and outperforms previous designs remarkably. With the proposed design, anthropomorphic robotic hands can be produced fast with low cost, and be customizable and deformable.


page 1

page 2

page 3

page 4

page 5

page 6

page 7


Towards Very Low-Cost Iterative Prototyping for Fully Printable Dexterous Soft Robotic Hands

The design and fabrication of soft robot hands is still a time-consuming...

CATCH-919 Hand: Design of a 9-actuator 19-DOF Anthropomorphic Robotic Hand

To achieve human-like dexterity for anthropomorphic robotic hands, it is...

An Overview of Robotic Grippers

The development of robotic grippers is driven by the need to execute par...

Third-party Evaluation of Robotic Hand Designs Using a Mechanical Glove

A robotic hand design suitable for dexterity should be examined using fu...

Process Issues for a Multi-Layer Microelectrofluidic Platform

We report on the development of some process capabilities for a polymer-...

Modeling and Simulation of Robotic Finger Powered by Nylon Artificial Muscles- Equations with Simulink model

This paper shows a detailed modeling of three-link robotic finger that i...

Low-cost LIDAR based Vehicle Pose Estimation and Tracking

Detecting surrounding vehicles by low-cost LIDAR has been drawing enormo...

Please sign up or login with your details

Forgot password? Click here to reset