FAQ-based Question Answering via Word Alignment

07/09/2015
by   Zhiguo Wang, et al.
0

In this paper, we propose a novel word-alignment-based method to solve the FAQ-based question answering task. First, we employ a neural network model to calculate question similarity, where the word alignment between two questions is used for extracting features. Second, we design a bootstrap-based feature extraction method to extract a small set of effective lexical features. Third, we propose a learning-to-rank algorithm to train parameters more suitable for the ranking tasks. Experimental results, conducted on three languages (English, Spanish and Japanese), demonstrate that the question similarity model is more effective than baseline systems, the sparse features bring 5 top-1 accuracy, and the learning-to-rank algorithm works significantly better than the traditional method. We further evaluate our method on the answer sentence selection task. Our method outperforms all the previous systems on the standard TREC data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro