Fanoos: Multi-Resolution, Multi-Strength, Interactive Explanations for Learned Systems

06/22/2020
by   David Bayani, et al.
0

Machine learning becomes increasingly important to tune or even synthesize the behavior of safety-critical components in highly non-trivial environments, where the inability to understand learned components in general, and neural nets in particular, poses serious obstacles to their adoption. Explainability and interpretability methods for learned systems have gained considerable academic attention, but the focus of current approaches on only one aspect of explanation, at a fixed level of abstraction, and limited if any formal guarantees, prevents those explanations from being digestible by the relevant stakeholders (e.g., end users, certification authorities, engineers) with their diverse backgrounds and situation-specific needs. We introduce Fanoos, a flexible framework for combining formal verification techniques, heuristic search, and user interaction to explore explanations at the desired level of granularity and fidelity. We demonstrate the ability of Fanoos to produce and adjust the abstractness of explanations in response to user requests on a learned controller for an inverted double pendulum and on a learned CPU usage model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset