Fairness-Efficiency Tradeoffs in Dynamic Fair Division

07/26/2019
by   David Zeng, et al.
0

We investigate the tradeoffs between fairness and efficiency when allocating indivisible items over time. Suppose T items arrive over time and must be allocated upon arrival, immediately and irrevocably, to one of n agents. Agent i assigns a value v_it in [0,1] to the t-th item to arrive and has an additive valuation function. If the values are chosen by an adaptive adversary it is known that the algorithm that minimizes maximum pairwise envy simply allocates each item uniformly at random; the maximum pairwise envy is then sublinear in T. If the values are independently and identically drawn from an adversarially chosen distribution D, it is also known that, under some mild conditions on D, allocating to the agent with the highest value — a Pareto efficient allocation — is envy-free with high probability. In this paper we study fairness-efficiency tradeoffs in this setting and provide matching upper and lower bounds under a spectrum of progressively stronger adversaries. On one hand we show that, even against a non-adaptive adversary, there is no algorithm with sublinear maximum pairwise envy that Pareto dominates the simple algorithm that allocates each item uniformly at random. On the other hand, under a slightly weaker adversary regime where item values are drawn from a known distribution and are independent with respect to time, i.e. v_it is independent of v_it' but possibly correlated with v_i't, optimal (in isolation) efficiency is compatible with optimal (in isolation) fairness. That is, we give an algorithm that is Pareto efficient ex-post and is simultaneously optimal with respect to fairness: for each pair of agents i and j, either i envies j by at most one item (a prominent fairness notion), or i does not envy j with high probability. En route, we prove a structural result about allocations of divisible items that might be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset