Fairly Allocating Goods in Parallel
We initiate the study of parallel algorithms for fairly allocating indivisible goods among agents with additive preferences. We give fast parallel algorithms for various fundamental problems, such as finding a Pareto Optimal and EF1 allocation under restricted additive valuations, finding an EF1 allocation for up to three agents, and finding an envy-free allocation with subsidies. On the flip side, we show that fast parallel algorithms are unlikely to exist (formally, CC-hard) for the problem of computing Round-Robin EF1 allocations.
READ FULL TEXT