Fair AutoML

11/11/2021
by   Qingyun Wu, et al.
10

We present an end-to-end automated machine learning system to find machine learning models not only with good prediction accuracy but also fair. The system is desirable for the following reasons. (1) Comparing to traditional AutoML systems, this system incorporates fairness assessment and unfairness mitigation organically, which makes it possible to quantify fairness of the machine learning models tried and mitigate their unfairness when necessary. (2) The system is designed to have a good anytime `fair' performance, such as accuracy of a model satisfying necessary fairness constraints. To achieve it, the system includes a strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness and the resource consumption on the fly. (3) The system is flexible to use. It can be used together with most of the existing fairness metrics and unfairness mitigation methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset