Factors determining maximum energy consumption of Bitcoin miners
Background: During the last years, there has been a lot of discussion and estimations on the energy consumption of Bitcoin miners. However, most of the studies are focused on estimating energy consumption, not in exploring the factors that determine it. Goal: To explore the factors that determine maximum energy consumption of Bitcoin miners. In particular, analyze the limits of energy consumption, and to which extent variations of the factors could produce its reduction. Method: Estimate the overall profit of all Bitcoin miners during a certain period of time, and the costs (including energy) that they face during that time, because of the mining activity. The underlying assumptions is that miners will only consume energy to mine Bitcoin if they have the expectation of profit, and at the same time they are competitive with respect of each other. Therefore, they will operate as a group in the point where profits balance expenditures. Results: We show a basic equation that determines energy consumption based on some specific factors: minting, transaction fees, exchange rate, energy price, and amortization cost. We also define the Amortization Factor, which can be computed for mining devices based on their cost and energy consumption, helps to understand how the cost of equipment influences total energy consumption. Conclusions: The factors driving energy consumption are identified, and from them, some ways in which Bitcoin energy consumption could be reduced are discussed. Some of these ways do not reduce the most important properties of Bitcoin, such as the chances of control of the aggregated hashpower, or the fundamentals of the proof of work mechanism. In general, the methods presented can help to predict energy consumption in different scenarios, based on factors that can be calculated from available data, or assumed in scenarios.
READ FULL TEXT