Factorization of Discrete Probability Distributions

12/12/2012 ∙ by Dan Geiger, et al. ∙ 0

We formulate necessary and sufficient conditions for an arbitrary discrete probability distribution to factor according to an undirected graphical model, or a log-linear model, or other more general exponential models. This result generalizes the well known Hammersley-Clifford Theorem.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.