Factorization Bandits for Online Influence Maximization

06/09/2019
by   Qingyun Wu, et al.
0

We study the problem of online influence maximization in social networks. In this problem, a learner aims to identify the set of "best influencers" in a network by interacting with it, i.e., repeatedly selecting seed nodes and observing activation feedback in the network. We capitalize on an important property of the influence maximization problem named network assortativity, which is ignored by most existing works in online influence maximization. To realize network assortativity, we factorize the activation probability on the edges into latent factors on the corresponding nodes, including influence factor on the giving nodes and susceptibility factor on the receiving nodes. We propose an upper confidence bound based online learning solution to estimate the latent factors, and therefore the activation probabilities. Considerable regret reduction is achieved by our factorization based online influence maximization algorithm. And extensive empirical evaluations on two real-world networks showed the effectiveness of our proposed solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset