FacEDiM: A Face Embedding Distribution Model for Few-Shot Biometric Authentication of Cattle

02/28/2023
by   Meshia Cédric Oveneke, et al.
0

This work proposes to solve the problem of few-shot biometric authentication by computing the Mahalanobis distance between testing embeddings and a multivariate Gaussian distribution of training embeddings obtained using pre-trained CNNs. Experimental results show that models pre-trained on the ImageNet dataset significantly outperform models pre-trained on human faces. With a VGG16 model, we obtain a FRR of 1.18 20 cattle identities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro